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Summary

The activation of nuclear factor-kappa B (NF-kB) in vascular endothelial cells
may be involved in vascular pathogeneses such as vasculitis or atherosclerosis.
Recently, it has been reported that some amino acids exhibit anti-
inflammatory effects. We investigated the inhibitory effects of a panel of
amino acids on cytokine production or expression of adhesion molecules that
are involved in inflammatory diseases in various cell types. The activation of
NF-kB was determined in human coronary arterial endothelial cells
(HCAECs) because NF-kB modulates the production of many cytokines and
the expression of adhesion molecules. We examined the inhibitory effects of
the amino acids cysteine, histidine and glycine on the induction of NF-kB
activation, expression of CD62E (E-selectin) and the production of interleu-
kin (IL)-6 in HCAECs stimulated with tumour necrosis factor (TNF)-a. Cys-
teine, histidine and glycine significantly reduced NF-kB activation and
inhibitor kBa (IkBa) degradation in HCAECs stimulated with TNF-a. Addi-
tionally, all the amino acids inhibited the expression of E-selectin and the
production of IL-6 in HCAECs, and the effects of cysteine were the most
significant. Our results show that glycine, histidine and cysteine can inhibit
NF-kB activation, IkBa degradation, CD62E expression and IL-6 production
in HCAECs, suggesting that these amino acids may exhibit anti-inflammatory
effects during endothelial inflammation.
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Introduction

Nuclear factor-kappa B (NF-kB) is an inducible regulatory
system involved in endothelial activation [1,2]. In addition,
among the cytokines modulating endothelial functions, the
proinflammatory tumour necrosis factor (TNF)-a plays a
crucial role in activation [3]. The control of processes
leading to endothelial dysfunction could be a useful tool for
investigating the pathogenesis of some vascular diseases.
The activation of NF-kB in vascular endothelial cells may
be involved in the vascular pathogenesis of vasculitis or
atherosclerosis [4,5]. Recently, studies have shown that
certain amino acids, including glycine, histidine, cysteine,
glutamine and tryptophan, exhibit anti-inflammatory
effects and histidine and glutamine suppress NF-kB
activation [6–16]. However, the anti-inflammatory effects
of amino acids in coronary endothelial cells are still
unclear.

In this study, we focused on cysteine, glycine and
histidine – amino acids that have been reported to exhibit
anti-inflammatory effects [6–14] – and investigated whether
these amino acids exhibit inhibitory effects against TNF-a-
induced NF-kB activation in human coronary arterial
endothelial cells (HCAECs). Furthermore, we also examined
the inhibitory effects of glycine, histidine and cysteine
on CD62E (E-selectin) expression and interleukin (IL)-6
production in HCAECs.

Materials and methods

Cell culture and stimulation conditions

HCAECs were obtained from Lonza (Walkersville, MD,
USA), and the cells were maintained as stationary cultures at
37°C under humidified 5% CO2. The cells were grown in
endothelial cell growth medium-2 (EGM-2) BulletKit
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(Lonza). The cells were incubated in Dulbecco’s modified
Eagle’s medium (Gibco RBL Life Technologies, Inc., Gaith-
ersburg, MD, USA) without fetal calf serum (FCS) (Gibco
RBL Life Technologies, Inc.) for 12 h prior to pretreatment
with alanine, glycine, histidine or cysteine (provided by Aji-
nomoto Pharma Co. Ltd, Tokyo, Japan). After washing, the
cells were resuspended in a medium that did not contain
amino acids (provided by Ajinomoto Pharma Co. Ltd). The
cells were incubated with or without alanine, glycine, histi-
dine or cysteine at concentrations of 0·2 mm, 2 mm and
20 mm for 2 h, prior to stimulation with 2 ng/ml TNF-a
(R&D Systems, Minneapolis, MN, USA). We chose these
concentrations of amino acids on the basis of the protocols
in previous reports [12]. Cell viability was determined by
performing trypan blue (Gibco RBL Life Technologies, Inc.)
staining.

Nuclear extracts and determination of
NF-kB activation

Nuclear extracts were harvested from HCAECs pretreated
with or without each amino acid after stimulation with
2 ng/ml of TNF-a for 30 min by using a nuclear extract kit
(Active Motif, Carlsbad, CA, USA), according to the manu-
facturer’s instructions. The protein concentrations of the
nuclear extracts were determined using the Coomassie Plus
Protein Assay Reagent (Pierce, Rockford, IL, USA). The con-
centrations of NF-kB were determined using an activated
NF-kB enzyme-linked immunosorbent assay (ELISA) kit
(Active Motif). An oligonucleotide containing the NF-kB
consensus site (5′-GGGACTTTCC-3′) was adsorbed onto
polystyrene microwells. The activated NF-kB in the nuclear
extracts bound specifically to this oligonucleotide and the
NF-kB complexes bound to the oligonucleotide were then
detected using an anti-NF-kB p65 antibody. Subsequently, a
secondary antibody conjugated to horseradish peroxidase
was added. The absorbance was measured at 450 nm by
spectrophotometry [17].

Western blotting of inhibitor kBa (IkBa)

HCAECs were pretreated with or without each amino acid at
a final concentration of 20 mm and then stimulated with
2 ng/ml of TNF-a for 0, 10, 20, 30 and 60 min. Whole cell
lysates were obtained by incubating the cell samples in
ice-cold lysis buffer [2% sodium dodecyl sulphate, 1 mm
ethylenediamine tetraacetic acid (EDTA), 0·2 mm phenylm-
ethylsulphonyl fluoride; Wako Pure Chemical Industries Ltd,
Osaka, Japan] with protease inhibitors (1 mm leupeptin and
1 mm pepstatin; Wako Pure Chemical Industries Ltd), fol-
lowed by centrifugation to remove debris (12 000 g for
10 min at 4°C). Protein concentrations were determined
using the Bio-Rad protein concentration reagent (Bio-Rad,
Hercules, CA, USA). The samples were stored at -80°C, and
samples containing 15 mg of protein were separated on dena-

turing 10% polyacrylamide (Bio-Rad) gels and then trans-
ferred to polyvinylidene difluoride membranes (Millipore
Co., Bedford, MA, USA). After three washes in Tris-buffered
saline with Tween 20 (TBST; 40 mm Tris-HCl, pH 7·6,
300 mm NaCl and 0·5% Tween 20; Wako Pure Chemical
Industries Ltd), the membranes were incubated with 1:1000
diluted rabbit monoclonal anti-IkBa antibodies (Cell Sig-
naling, Beverly, MA, USA) in TBST containing 5% non-fat
dry milk (Wako Pure Chemical Industries Ltd) overnight at
4°C. We also used rabbit polyclonal anti-human b-actin anti-
body (1:200; AnaSpec, Inc., San Jose, CA, USA) as an internal
control. After three washes in TBST, the membranes were
incubated with 1:2000 diluted horseradish peroxidase-
conjugated goat anti-rabbit immunoglobulin (Ig)G (Bio-
Rad) for 1 h at room temperature. Immunoreactive proteins
were detected by enhanced chemiluminescence (Amersham,
Arlington Heights, IL, USA) and analysed by radiography.
The quantification of bands was performed using Kodak
Digital Science 1D (Eastman Kodak Company, New Haven,
CT, USA).

Determination of CD62E expression

HCAECs (2 ¥ 106 cells/ml) were exposed to 2 ng/ml of
TNF-a with or without pretreatment with alanine, glycine,
histidine or cysteine for 2 h. The cells were collected 2 h
after the incubation with or without TNF-a, after which the
cells were harvested and the expression of CD62E was
determined by flow cytometric analysis, using a phycoeryth-
rin (PE)-conjugated anti-CD62E antibody (BD Phar-
mingen, San Diego, CA, USA). PE-conjugated mouse IgG1
(BD Pharmingen) was also used as the isotype-matched
control. Immunofluorescence staining was analysed with a
fluorescence-activated cell sorter (FACS), FACScalibur flow
cytometer equipped with CellQuest software (Becton-
Dickinson Biosciences, San Diego, CA, USA). In each assay,
10 000 cells were analysed.

Determination of IL-6 concentrations

The concentration of IL-6 in the supernatant of HCAECs
after incubation with or without TNF-a (2 ¥ 106 cells/ml,
stimulation for 6 h) was determined using a sandwich-type
ELISA kit (R&D Systems, Minneapolis, MN, USA). The
detection limit for IL-6 was 3·1 pg/ml.

Statistical analysis

The data are presented as the mean � standard error of the
mean (s.e.m.). Statistical analysis was performed using a
one-way analysis of variance (anova), with P-values less
than 0·05 considered as significant. Analyses and calculations
were performed using spss version 12·0 (SPSS, Inc., Chicago,
IL, USA).
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Results

Prior to these experiments, we determined cell viability by
trypan blue staining and found that there were no significant
differences in cell viability with or without treatment with
each amino acid (data not shown). Figure 1 presents the
NF-kB activation and inhibitory effects of amino acids in
HCAECs stimulated with TNF-a. NF-kB activation was
induced significantly by stimulation with 2 ng/ml TNF-a for
30 min in non-treated HCAECs (#P < 0·001). Pretreatment
with glycine (20 mm), histidine (0·2 mm, 2 mm and 20 mm)
and cysteine (0·2 mm, 2 mm and 20 mm) inhibited NF-kB
activation significantly in TNF-a-stimulated HCAECs
(**P < 0·01, **P < 0·01, **P < 0·01, **P < 0·01, ***P < 0·001,

***P < 0·001, and ***P < 0·001, respectively), whereas
alanine did not affect NF-kB activation. It has been reported
previously that alanine does not exhibit any anti-
inflammatory effects [12]; therefore, we used alanine as an
amino acid control in subsequent experiments. The inhibi-
tory effect of cysteine was significant compared to that of
alanine, glycine and histidine at all concentrations.

As shown in Fig. 2, TNF-a stimulation induced degrada-
tion of IkBa significantly, with a peak at 10 min after stimu-
lation in HCAECs, compared to b-actin, which was used as a
housekeeping protein control. Pretreatment with 20 mm his-
tidine or cysteine inhibited IkBa degradation significantly at
10 min. Pretreatment with glycine (20 mm), histidine (2 mm
and 20 mm) or cysteine (0·2 mm, 2 mm and 20 mm) inhib-
ited significantly the TNF-a-induced expression of CD62E
(***P < 0·001, **P < 0·01, ***P < 0·001, ***P < 0·001,
***P < 0·001 and ***P < 0·001, respectively), as shown in
Fig. 3. Alanine did not suppress TNF-a-induced expression
of CD62E. Among these groups, the effects of cysteine and
the inhibitory effects of NF-kB activation were the most
significant. The addition of amino acids did not affect the
expression of CD62E.

Pretreatment with glycine (20 mm), histidine (2 mm and
20 mm) and cysteine (0·2 mm, 2 mm and 20 mm) reduced
IL-6 production significantly from TNF-a-treated
HCAECs (*P < 0·05, **P < 0·01, ***P < 0·001, ***P < 0·001,
***P < 0·001 and ***P < 0·001, respectively), while IL-6
production was not affected by alanine (Fig. 4). Histidine
(20 mm) and cysteine (2 mm and 20 mm) without TNF-a
stimulation reduced IL-6 production.

Discussion

We have studied NF-kB activation previously in various
cell types, including HCAECs in vitro [18–20]. We have
also reported that histidine and cysteine exhibit anti-
inflammatory effects on THP-1 cells, a human acute mono-
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Fig. 1. Inhibitory effect of amino acids on nuclear factor-kappa B

(NF-kB) activation measured using enzyme-linked immunosorbent

assay (ELISA) in human coronary arterial endothelial cells (HCAECs)

stimulated with tumour necrosis factor (TNF)-a (2 ng/ml) for
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the mean. *P < 0·05; **P < 0·01; ***P < 0·001, compared to cells

stimulated with TNF-a. #P < 0·001, compared to non-treated cells.

Fig. 2. Effects of amino acids on tumour

necrosis factor (TNF)-a-induced inhibitor kBa
(IkBa) degradation analysed by Western

blotting of human coronary arterial endothelial

cells (HCAECs) (a). b-Actin was used as an

internal control (b). TNF-a stimulation

induced degradation of IkBa, and the peak

occurred 10 min after stimulation in HCAECs.

Pretreatment with 20 mm of histidine or

cysteine inhibited IkBa degradation compared

to TNF-a-stimulated cells at 10 min compared

to non-treated cells. Similar results were

obtained in three independent experiments.

Representative blots are shown.
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cytic leukaemia cell line [21]. In this study, we showed that
glycine, histidine and cysteine, but not alanine, inhibited
NF-kB activation and IkBa degradation by stimulation with
TNF-a. Further, these amino acids also inhibited CD62E
expression, E-selection expression and IL-6 production
induced by NF-kB activation in HCAECs stimulated with
TNF-a. Glycine (20 mm), histidine (0·2 mm, 2 mm and
20 mm) and cysteine (0·2 mm, 2 mm and 20 mm) inhibited
NF-kB activation significantly. IkBa degradation was inhib-
ited by 20 mm histidine and cysteine. In addition, 20 mm
glycine, 2 mm and 20 mm histidine and 0·2 mm, 2 mm and

20 mm cysteine TNF-a-induced CD62E expression and IL-6
production significantly in our study. Glycine and histidine
exhibit anti-oxidant effects [7,12], and it has been reported
that glycine exhibits anti-inflammatory effects by suppress-
ing intracellular Ca++ levels via activation of the glycine-
gated chloride channels [9–11]. Further, some reports have
shown that histidine exhibits anti-oxidant effects such as
scavenging free radicals, binding divalent metal ions and
glycating actions [22–24]. Interestingly, our results suggest
that cysteine, a sulphur-containing amino acid, also exhibits
an inhibitory effect against NF-kB activation, and this inhi-
bition is greater than that exerted by glycine or histidine.
N-acetyl-l-cysteine (NAC), a derivative of cysteine and glu-
tathione, which is synthesized by cysteine and glycine, are
known to exhibit anti-oxidant effects [25]. Cysteine has a
sulphhydryl residue (–SH) that may protect cells against oxi-
dants, as for NAC and glutathione. Regarding the strong
anti-inflammatory effects of cysteine, we speculate that the
sulphhydryl residue may promote anti-oxidant effects
and suppress TNF-a-induced NF-kB activation and IkBa
degradation.

We also showed that among all the amino acids used in
our study, pretreatment with cysteine exerted the highest
inhibitory effects on CD62E expression and IL-6 production
induced by NF-kB activation in HCAECs after TNF-a
stimulation. CD62E is responsible for the adhesiveness of
endothelial cells with respect to leucocytes and platelets
[26,27]. IL-6 was identified originally as a factor that induces
the synthesis of Igs in activated B cells but has now been
found to exhibit a wide range of biological functions [28,29].
Previous reports have shown that IL-6 and CD62E play an
important role in the pathogenesis of vascular inflammatory
conditions such as atherosclerosis and vasculitis [30,31].

Cysteine at a concentration of 0·2 mm exhibited inhibi-
tory effects on TNF-a-induced NF-kB activation, CD62E
expression and IL-6 expression in HCAECs in our study.
Regarding the concentration of amino acids in previous
reports, the anti-inflammatory effects of glycine were
studied at concentrations of less than 10 mm [32,33]. One
report showed that 45 mm glycine inhibited NF-kB activa-
tion induced by HgCl2 [34]. Some studies have investigated
histidine at high concentrations (above 20 mm), which
show anti-inflammatory effects [12,13]. Because cysteine is
reportedly toxic to hepatocytes at a concentration of 4 mm
[35], the effects of 20 mm cysteine used in our study might
lead to cell toxicity. It has been reported that 5% dietary
histidine increased plasma or tissue concentrations to more
than 2 mm in a mouse model of colitis [9]. We speculated
that oral ingestion of less than 5% dietary amino acid would
elevate the amino acid levels to more than 2 mm in the
vascular endothelium. Thus, our results suggest that suffi-
cient concentrations of amino acids can be achieved in the
plasma or tissues by consuming daily meals, which can
induce anti-inflammatory effects in vitro. We believe that
appropriate dietary supplements containing these amino
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acids may exert inhibitory effects against vasculitis and ath-
erosclerosis in vivo.

TNF-a activates not only the NF-kB pathway but also the
activator protein-1 (AP-1) pathway. It is well known that
AP-1 is also an important molecule in endothelial inflam-
mation [36]. It has been reported that NAC inhibits AP-1
activation induced by TNF-a in gastric epithelial cells [25].
In this study, histidine and cysteine strongly inhibited
CD62E expression and IL-6 production. It is possible that,
as for NAC, histidine and cysteine also inhibit AP-1 activa-
tion because histidine and cysteine showed strong anti-
inflammatory effects in our study.

In conclusion, our results show that glycine, histidine and
cysteine can each inhibit NF-kB activation, CD62E expres-
sion and IL-6 production in HCAECs, suggesting that these
amino acids may exhibit anti-inflammatory effects during
endothelial inflammation.
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